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Abstract

Online experimentation assumes evolving data stream, optimizing over metric or
making inference at each time given the data collected so far. More and more
experiments nowadays are running in this online fashion, either due to the restriction
of data collecting process, or desire for flexibility. Particularly, for these online
experiments, one would hope to be able to make decisions with confidence as soon
as possible, without costing much revenue due to exploring bad treatments, while
being sensitive to time variation in the treatment effect. Based on these motivations,
we build an online experimentation platform, which is flexible for conducting
different tasks (e.g. optimization or various testing tasks), efficient for reaching
significance fast with low revenue cost, robust for handling time variation.

1 Introduction

Nowadays more and more companies runs experiments in a sequential manner due to the nature of
high volume of data stream. Multi-armed bandits is a useful model for doing such online experiments:
treating each arm as a treatment/variation, and adaptively pulling them to learn and exploit at the same
time 1. Running such experiments, people commonly are interested in either optimization or testing,
which are in fact at odds: sampling strategy that is optimal for testing would hurt optimization, and
vice versa. Different sampling strategies are carefully developed to achieve the optimal zone for either
optimization or testing, where two main guidelines for optimization is Probability matching (e.g.
Thompson Sampling) and Optimize under uncertainty (i.e. Upper Confidence Bound (UCB)); and
Top-Two Thompson Sampling [1] and lil’UCB[2] for testing. However, the interpolation between
those two are relatively under-explored. Degenne et al. [3] looked into this direction, by treating the
uncertainty inflation level in lil’UCB[2] as the interpolation parameter, and studied how stopping
time for best arm identification and accumulated regret will change with it. How the interpolation
would work under many other testing problem like positive arm identification over control [4] using
other sampling philosophy like Thompson Sampling remains under explored. Additionally, the
environment in reality is constantly changing, causing an issue called time variation. This issue has
been widely addressed for optimization goals, using ideas ranging from assuming an underlying
stochastic process model [5] to change detection [6] and memory limitation [7]. However, how to do
valid testing in this setting lacks formal investigation.

In this project, we first investigate the behavior of interpolation between optimization and testing using
re-sampling sub-optimal or uncertainty inflation idea with Thompson sampling. From simulation,
we find that, Thompson Sampling with uncertainty inflation is much more promising as a flexible
adaptive sampling algorithm for both optimization and testing. For the abruptly time variation case,
we propose a new change detector (CD) based on the any-time valid confidence interval, which

1Therefore, we will use the term treatment and arm exchangeably throughout the paper
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is much faster and memory efficient compared with other current state of art change detectors, or
memory decay methods. Using the policy of restarting if a change is detected, we are able to get
much lower regret in either simulation or real dataset, together with much tighter any-time valid
confidence bounds. In the end, use our findings, we are able to construct an flexible, efficient and
robust online experimentation platform, using Thompson Sampling as adaptive sampling strategy
for efficiency, with uncertainty inflation as convenient interpolation between optimization goal and
testing goal for flexibility , and a novel change detector to protect against abrupt changes in treatment
effect for robustness.

2 Problem set up: online experimentation

We assume users arrive sequentially, and at each time step t, we assign the arrived user to a treatment
It from a set of possible treatments using only information up to time t, and record reward YIt(t).
Throughout this paper, we consider stochastic reward, that is at each time t, Yi(t) associate with
each arm i ∈ [K] is a random variable follows some CDF Fi,t with mean µi(t). Particularly, we
call the environment stationary if Fi,t does not changes with t and drops the index t if so; and
non-stationary otherwise. Additionally, we assume users are independent from each other, that is
Yi(1), Yi(2), . . . , are independent random variables for each arm i. We denote Ti(t) as the number
of samples, and µ̂i,Ti(t) as the empirical mean of rewards for treatment i by time step t. This online
experimentation setting is most applicable to the system with large traffic and fast response. Large
companies nowadays like Amazon, Google, Facebook fits this profile, and more and more are joining
the club due to fast development of internet, transmission and automation. In the following, we
formally introduce the two tasks of common interests in online experimentation:

Optimization The response Y is usually related to the commercial effect that people are interested
in. For example, it can be the indicator of whether the user clicks on a given option or not on an
webpage; the amount of money user spends on a product; the length of time a user stays with the
recommended service. Optimizing of the reward is often transformed to minimization of the regret,
which is the loss compared to always pull the optimal treatment: R(T ) =

∑T
t=1 E

[
YI?t (t)− YIt(t)

]
,

where I?t is the optimal treatment at time t (i.e. the treatment with the highest mean at time t).

Inference Inference is essential when people would like to make decision with confidence. Most of
time, promoting new changes or policies requires lots of time and effort, and aggressive decision can
lead to countless loss. Here for simplicity and validness we consider inference within a stationary
stage, that is the distribution of rewards does not change with time. Denote the baseline as µ0, that is
the mean of reward associated with the current status without any change, and confidence level δ,
people are interested in (1) Identify positive arms: Discover a set of indices St at time t such that
its false discovery rate (FDR) at time are controlled by δ, where FDR(St) = E

[
|St∩H0|
|St|∨1

]
,H0 =

{i ∈ [K], µi − µ0 ≤ ε}. (2) Identify the best k arms: Discover a set of indices S of size k, such
that with probability 1 − δ, it is the set of the treatments with the top k means at time t, that is
mini∈S µi −maxj∈Sc µj ≤ ε.

3 Methods

The high level visualization of our proposed experimentation platform are shown in Section E, and
detailed online experimetation algorithm is summarized in Algorithm 1, which allows flexible and
efficient interpolation between optimization goal and various testing tasks listed in Section 2, and also
able to protect against abrupt changes over time. Each solution/strategy we adopted in this platform
are winners in our careful investigation and evaluation among many state of arts. In the following, we
elaborates them one by one and reasoning about our choices.

3.1 Any-time valid inference and adaptive sampling

To do inference in the online setting, the normal way is via constructing any-time valid confidence
interval for the true treatment effect, that is finding a sequence of {Ci(Ti(t), δi)}∞t=1 for each treatment
i with Ci(Ti(t), δi) : = [Li(Ti(t), δi), Ui(Ti(t), δi)]such that

Pr{∀t ≥ 1, Li(Ti(t), δ) ≤ µi ≤ Ui(Ti(t), δi)} ≥ 1− δi, (1)
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where 1 − δi is the confidence level assigned to treatment i. By definition, these any-time valid
confidence intervals automatically corrects for the multiplicity issue introduced by data accumulation,
allows for peeking at any time. Use the carefull design of δi in [8] and [4], we are able to respectively
do testing like the best arm and positive arm identification with confidence 1− δ.

There are many ways to construct such any-time valid confidence interval, we particularly use the
ones in [9] due to its proved optimality. Specifically, assuming Yi,t

iid∼subGaussian(σ2
i ), then we have

[µ̂i,Ti(t) − φi(Ti(t), δi), µ̂i,Ti(t) + φi(Ti(t), δi)] satisfies (1), where

φi(t, δ) =

√
σ2
i

t

[
log(

1

δ
) + 3 log(log(

1

δ
)) + 1.5 log (log(et/2))

]
. (2)

What comes with this any-time valid inference is the cost of time to reach significance, together with
the loss of revenue. Adaptive sampling like MAB algorithms, on the other hand, can mitigate the
time cost, and even revenue loss if design properly. In our paper, we use Thompson Sampling (TS) as
the basic adaptive sampling algorithms, due to its superiority over other MAB algorithms in terms of
optimization [10] (i.e. mininize revenue loss), and its compatibility for prior information. We start
from TS and adjust it to accommodat different tasks (either purely optimization or inference) and
scenarios.

3.2 Interpolating optimization and inference in stationary environment

The adaptive sampling strategy for optimization and inference goal turns out to be at odds, since
optimization requires more exploitation while inference requires more exploration. In the following,
we introduce two simple ideas of interpolating them. The first one is resampling the sub-optimal,
that is at each time step t, with probability βt, we sample the sub-optimal arm, and with probability
1 − βt, we sample the optimal arm. Russo [1] used this idea to develop optimal strategy for best
arm identification based on Thompson Sampling, and found that as βt ≡ 1

2 , Thompson Sampling
paired with resampling is optimal. Another idea is uncertainty inflation, that is inflate the uncertainty
level for each arm by a certain amount αt. [2] uses this idea to design optimal strategy for best arm
identification based on UCB, and proved optimality up some constant. The common nice feature
of these two ideas is that there are a simple tuning parameter controlling the level of interpolation.
Section 4 shows the superioty of uncertainty inflation over re-sampling, therefore we adopt uncertainty
inflation in our final platform.

3.3 Detect changes in peice-wise stationary environment

In order to do valid inference, we assume piece-wise stationary environment, that is the system
changes only at a number of unknown time step, and remains stationary otherwise. There exists a
class of methods trying to mitigate the influence of old past data gradually, e.g. parameter decay
method in [7] or discounted-UCB, slide-window UCB in [11]. These methods are able to pick up
the optimal arms correctly, but suffer from non-informative inference since they only allow limited
memory of samples.

Another line of work that would allow better inference is based on change detection and restart, where
the key is constructing powerful and efficient change detector. Among the current state-of-art change
detectors, M-UCB [12] is not wanted in reality in the sense that it enforces a portion of uniform
sampling, while ADSwitch [6] is very computationally expensive: it requires O(t2) computation at
each time step t. GLR-klUCB [13] tried to use the generalized ratio test for change detection, but it
still requires O(t) computation at each time step t. In the following, we introduce a novel, simple,
powerful change detector that only requires O(1) computation at each time step, and do not require
any portion of uniform sampling.

Change Detector (CD) Given a window size W , and φi(·, ·) defined in (2), assume rewards follow
subGaussian distribution, we decide there is a change occurred up to time t for a treatment i with
confidence 1− δ if∣∣µ̂i,Ti(t) − µ̂i,Ti(t)−W

∣∣ > W

Ti(t)
[φi(Ti(t)−W, δ/2) + φi(W, δ/2)] , (3)

where φi(·, ·) is defined in (2). The selection of W can be decided if we assume minimal expected
change in the mean ∆ and variance σ2

i : W = σ2
i /∆

2.
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One may refer to Section D for detailed reasoning. In Section 4.2, we showed that our change detector
has much lower regret compared with parameter decay strategy, and is able to restart almost right
after the change point; we also use a real dataset to show that our change detector has much lower
regret compared with other solutions to the problem, and gives near optimal inference of the best arm.

4 Experiments

The following results using the independent Beta-Bernoulli model, and the extra experiments for
independent Normal-Normal model are in Section B for interested readers. Specifically, in this section
we assume each arms are independent from each other, and Yi(t) ∼ Bernoulli(µi(t)) across all t for
each arm i, where we assume µi(t) is fixed numbers in R and is piece-wise linear in time t. In the
sampling step, we using the Beta prior for Thompson Sampling, that is θti ∼ Beta(ati, b

t
i) such that

the posterior can be easily updated using conjugate relationship. Particularly, for πti = Beta(ati, b
t
i),

the posterior given observation Yi(t) can be updated using πt+1
i = Beta(ati + Yi(t), b

t
i + 1− Yi(t)).

One may refer to Section A for details of conducting resampling and inflation in this simple model.
The following results are all averaged over 30 trials. Each setting is ran under the confidence level
δ = 0.05, and precision ε = 0.

4.1 Evaluating the interpolation effect in stationary case

In this section, we would like to evaluate the effect of interpolation using either resampling suboptimal
or inflating posterior variance in the stationary environment. We run the algorithms with some
maximum pulls, and record the time when reached statistical significance as the stopping time.
If one algorithm have not reach significance until the maximum pulls, the stopping time will be
NA. We compare the performance of Thompson sampling with different interpolation parameter
(β ∈ {0.5, 0.4, 0.3, 0.2, 0.1, 0} for resampling suboptimal, α ∈ {10, 5, 4, 3, 2, 1} for inflate posterior
variance), when dealing with different inference problems. We use uniform sampling as a benchmark.

Best arm identification. We first look at a problem of identifying the best arm among five arms with
mean {0.1, 0.2, 0.3, 0.4, 0.5}. In Figure 5, we plot the boxplot of stopping time and regret at stop2

versus different interpolation parameter, with uniform sampling as a benchmark in the first position,
using results of 30 independent trials. We can see that from Figure 5 that, resampling suboptimal
strategy underperforms uniform sampling with respect of either inference or optimization (i.e. either
stopping time or regret at stopping), while inflating variance strategy outperforms uniform sampling
in both aspect. Figure 5 also demonstrate interesting influence of the interpolation parameter, when
under none interpolation (that is 0 for resmapling and 1 for inflating), the stopping time will be
infinite; however just by a bit from the end of none interpolation, the algorithm will have finite
stopping time; the reduction in stopping time seems to be logarithmic in the interpolation parameter,
that is setting the interpolation parameter too far from none will not bring much reduction in stopping
time, while it will hurt regret on the other hand.

Positive arm identification. Then we look into the testing problem of identifying positive arms
with FDR control. We consider 20 arms with means randomly generated from U [0, 1], and try to
identify arms that is better the control level 0.5. We ran the algorithms with maximum 5 ∗ 105 pulls,
and plot the power3 versus time (i.e. the number of pulls) in Figure 6, with different color marking
different interpolation level. We can see that, given the range of interpolation parameter we tried,
both resampling optimal or inflating the variance strategy underperforms uniform sampling in terms
of power, while outperforms in terms of regret. However, inflating the variance looks more promising
than resampling once again, since its power at level α = 10 is able to fast converge to that of uniform
sampling, while its regret is much lower than either resampling suboptimal or uniform sampling.

In conclusion, inflating the posterior variance serves as a better interpolation strategy compared
with resampling the sub-optimal, from the aspect of reducing time to reach significance without
cost of much regret in both inference of best arm or positive arm identification. We provide more
evidence for supporting this argument in Section C from the aspect of pulling probability of different
arms. On the other hand, Thompson sampling performs similarly as UCB in term of serving as
foundations for doing interpolation, while Thompson sampling shows slightly stronger trade-off

2If the stopping time is NA, then the regret at stop will be recorded as the regret at the maximum pulls.
3the proportion of signals that are correctly identified with confidence
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Figure 1: The accumulated stopping probability (proportion of experiments that have stopped out of
total trials) and boxplot of stopping time (time when reaches statistical significance) and regret at stop
(empirical gap of accumulated reward from always pulling the best) versus different interpolation
parameter, when finding the best arm among five arms with means {0.1, 0.2, 0.3, 0.4, 0.5}. Particu-
larly, (a) plots for Thompson Sampling with resampling probability β ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}
and uniform sampling on the left in each boxplot, (b) plots for the Thompson Sampling with inflated
variance by different level α ∈ {1, 2, 3, 4, 5, 10}, and (c) plots for the UCB with inflated variance by
different level α ∈ {1, 2, 3, 4, 5, 10}.

effect (i.e. same level of uncertainty inflation leads to more reduction of stopping time when using
Thompson Sampling). Given many other known practical advantages of Thompson Sampling like
it allows of easy incorporation with prior information and dependency structure among arms, we
recommend going with Thompson Sampling in practice. On a higher level, as for comparison between
adaptive sampling and uniform sampling generally, except for the obvious advantage of adaptive
sampling with regard revenue cost, it sometimes also outperforms uniform sampling in terms of time
to reach significance. For example, when dealing with best arm identification, or trying to achieve
moderate power in inferring behaviour of many arms (i.e. positive arms identification). However,
adaptive sampling will leads to longer time comparing with uniform sampling to reach high power
in inferring behaviour of many arms, which is as expected. Therefore we suggest one should put
the types of tasks and scenarios into serious consideration when choosing to use adaptive sampling
carefully in practice.

4.2 Evaluating change detector in peice-wise stationary case

In this section, we would like to evaluate the performance of our change detector proposed in
Section 3.3. We consider four sampling strategies related to Thompson Sampling (TS): TS, TS
with restarts as if the change point is known (TS-Oracle), TS with the change detector proposed in
Section 3.3 (TS-CD), TS with parameter decay [7] (TS-Decay); and additionally the states-of-art
methods reviewed in Section 3.3, together with other relevant existing work [11, 14]. We again
assume Beta-Bernoulli model as in Section 4.1, but we consider that the means of arms change
abruptly at certain unknown time points, while remains unchanged between each change time points.
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Figure 2: The power versus time given different interpolation parameter, when finding the arms
better than the control level 0.5 with FDR control under 0.05 among 20 arms with means randomly
generated from U [0, 1]. Particularly, (a) plots for Thompson Sampling with resampling probability
β ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}, (b) plots for the Thompson Sampling with inflated variance by
different level α ∈ {1, 2, 3, 4, 5, 10}, and (c) plots for the Thompson Sampling with inflated variance
by different level α ∈ {1, 2, 3, 4, 5, 10}.

For the sake of simplicity, we do not include the effect of interpolation, and only evaluate the
performance by regret versus time, and the accurateness of inference of the best arm (whose value
and identity may changes across the time). Particularly, we use the any-time valid confidence bound
to represent our inference on the best arm.

Experiment on synthetic data We first consider using purely synthetic data, where we generate 5
arms with means change with time as in Figure 3(a). Particularly, we use W = 1000 in TS-CD,
and decay rate γ = 0.001 in TS-Decay, which are selected by optimality within a range of different
options. We plot in Figure 3(c) the any-time valid confidence bounds for the true mean of best
arm in each stationary period, together with the empirical estimation and the true value, and plot in
Figure 3(b) the regret versus time for each sample strategy. One can see that, our TS-CD is able to
detect changes almost right after the change points, thus giving the most accurate inference of the
best arm comparing with others, together with regret much lower than others as well.

Experiment on Yahoo! Front Page Dataset Then we evaluate the performance of our TS-CD
algorithm using the benchmark dataset publicly published by Yahoo! 4. This dataset provides a
binary value for each arrival to represent whether the user clicks the specified article. We follows
we use one arm to represent one article and assume a Bernoulli reward, and obtain a piece-wise
stationary scenario for six articles with T = 4× 105, and 8 change points, as shown in Figure 4(a),
following the standard processing steps in literature of abrupt change time variation [12]. Particularly,
we use W = 500 in TS-CD, and decay parameter γ = 0.01 in TS-Decay. Again, we plot the regret

4Yahoo! Front Page Today Module User Click Log Dataset
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Figure 3: The performance of TS-CD when facing simulated abrupt time variation. (a) plots the true
mean of arms versus time; (b) plots the regret versus time; (c) plots the inference of the best arm
during each stationary period, with bold line indicating the empirical estimation, bold dashed line
indicating the truth and dashed line indicating the confidence bounds.

versus time in Figure 3(b), which shows that our TS-CD strategy is close to the optimal solution
TS-Oracle, while being much better than other state-of-arts methods. Figure 3(c) plots the inference
of the best arm over each stationary period for TS-CD and TS-Oracle, which shows that our TS-CD
gives confidence interval covers the true mean most of times, with empirical estimate close to the
true mean if failed to cover. Overall, the inference of the best arm of TS-CD is arguably comparable
to the optimal solution, TS-Oracle.

Figure 4: The performance of TS-CD when dealing with real world problem generated from Yahoo.
(a) plots the true mean of arms versus time; (b) plots the regret versus time using different state-of-arts
algorithms designed for handling time variation; (c) plots the inference of the best arm during each
stationary period, with bold line indicating the empirical estimation, bold dashed line indicating the
truth and dashed line indicating the confidence bounds.
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5 Conclusion

In conclusion, from the above investigation, we find Thompson Sampling with uncertainty inflation a
promising strategy to do interpolation between optimization and inference; and we propose a novel
change detector to force the restart to deal with the abrupt changing non-stationary environment,
which proves working well in either synthetic or real problem. We summarize our findings in to a
general platform for flexible online experiments with multiple goals, and robustness for time variation.
We hope this platform can help people to do efficient testing with low cost in various environment.
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Appendices
Appendix A Details about interpolation under Beta Bernoulli model

Under such simple model in Section 4.1, we incorporate with resampling suboptimal with probability
β ∈ [0, 0.5] by the following: at each time step t, after sampling each θti from the posterior distribution
πti , we pull best arm i? (i.e. the one with highest θti) with probability 1− β, and we resample until
the the optimal arm is different from i?. We we incorporate with uncertainty inflation with level
α ∈ [1,∞) as the following: at each time step, we sampling each θti from modified posterior
distribution π̃ti = Beta(ati/α

2, bti/α
2), such that the posterior variance will be inflating as multiplying

α2 with posterior mean unchanged. Note that, resampling with probability β = 0 is equivalent to
inflating variance by α = 1 times, both recovers Thompson Sampling.

Appendix B Additional experiments for Gaussian arms

Figure 5: The accumulated stopping probability (proportion of experiments that have stopped out of
total trials) and boxplot of stopping time (time when reaches statistical significance) and regret at stop
(empirical gap of accumulated reward from always pulling the best) versus different interpolation
parameter, when finding the best arm among five arms with means {0.1, 0.2, 0.3, 0.4, 0.5}. Particu-
larly, (a) plots for Thompson Sampling with resampling probability β ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}
and uniform sampling on the left in each boxplot, (b) plots for the Thompson Sampling with inflated
variance by different level α ∈ {1, 2, 3, 4, 5, 10}, and (c) plots for the UCB with inflated variance by
different level α ∈ {1, 2, 3, 4, 5, 10}.
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Figure 6: The power versus time given different interpolation parameter, when finding the arms
better than the control level 0.5 with FDR control under 0.05 among 20 arms with means randomly
generated from U [0, 1]. Particularly, (a) plots for Thompson Sampling with resampling probability
β ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}, (b) plots for the Thompson Sampling with inflated variance by
different level α ∈ {1, 2, 3, 4, 5, 10}, and (c) plots for the Thompson Sampling with inflated variance
by different level α ∈ {1, 2, 3, 4, 5, 10}.

In this section we assume each arms are independent from each other, and Yi(t) ∼ Normal(µi(t), 1)
across all t for each arm i, where we assume µi(t) is fixed numbers in R and is piece-wise lin-
ear in time t. In the sampling step, we using the Normal prior for Thompson Sampling, that is
θti ∼ Normal(ati, b

t
i) such that the posterior can be easily updated using conjugate relationship.

Particularly, for πti = Normal(ati, b
t
i), the posterior given observation Yi(t) can be updated using

πt+1
i = Normal( 1

1+bti
ati +

bti
1+bti

Yi(t),
bti

1+bti
). The following results are all averaged over 30 trials.

Each setting is ran under the confidence level δ = 0.05, and precision ε = 0.
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Appendix C Reasoning the superiority of uncertainty inflation over
resampling sub-optimal

Figure 7: The empirical probability of pulling each arms for different sampling policy. One may see
that resampling suboptimal results in the probability of pulling the best arm not converge to one, a
behaviour that is unwanted in regret minimization.

Appendix D Reasoning of the Change Detector in Section 3.3

Figure 8: Intuition behind the proposed change detector in Section 3.3.

At each time step, one would like to know whether a change has occurred, we would test this using
contradiction. Assume no change has occurred up to time t for arm i and that Yi(t) is sub-Gaussian
random variable with the same mean µ. When Ti(t) > W , from triangle inequality, we have that∣∣∣∣∣∣ 1

Ti(t)−W

Ti(t)−W∑
q=1

Yi(q)−
1

W

W∑
s=1

Yi(Ti(t)−W + s)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

Ti(t)−W

Ti(t)−W∑
q=1

Yi(q)− µ

∣∣∣∣∣∣+

∣∣∣∣∣µ− 1

W

W∑
s=1

Yi(Ti(t)−W + s)

∣∣∣∣∣ (4)

11



From (2), we know that, with probability less than 2 ∗ δ/2 = δ, we have∣∣∣∣∣∣ 1

Ti(t)−W

Ti(t)−W∑
q=1

Yiq − µ

∣∣∣∣∣∣ ≥ φi(Ti(t)−W, δ/2), or

∣∣∣∣∣µ− 1

W

W∑
s=1

Yi(Ti(t)−W + s)

∣∣∣∣∣ ≥ φi(W, δ/2),

(5)

which is saying with probability bigger than 1− δ, we have∣∣∣∣∣∣ 1

Ti(t)−W

Ti(t)−W∑
q=1

Yi(q)− µ

∣∣∣∣∣∣ ≤ φi(Ti(t)−W, δ/2), and

∣∣∣∣∣µ− 1

W

W∑
s=1

Yi(Ti(t)−W + s)

∣∣∣∣∣ ≤ φi(W, δ/2).

(6)

Therefore, with probability bigger than 1− δ, we have∣∣∣∣∣∣ 1

Ti(t)−W

Ti(t)−W∑
q=1

Yi(q)−
1

W

W∑
s=1

Yi(Ti(t)−W + s)

∣∣∣∣∣∣ ≤ φi(Ti(t)−W, δ/2) + φi(W, δ/2),

(7)

since∣∣∣∣∣∣ 1

Ti(t)−W

Ti(t)−W∑
q=1

Yi(q)−
1

W

W∑
s=1

Yi(Ti(t)−W + s)

∣∣∣∣∣∣ =

∣∣∣∣µ̂i,Ti(t)−W −
Wµ̂i,Ti(t) − (Ti(t)−W )µ̂i,Ti(t)−W

W

∣∣∣∣
=

∣∣∣∣Ti(t)W
µ̂i,Ti(t) − µ̂i,Ti(t)−W

∣∣∣∣ , (8)

we have (7) simplified to that, with probability bigger than 1− δ,∣∣µ̂i,Ti(t) − µ̂i,Ti(t)−W
∣∣ ≤ W

Ti(t)
[φi(Ti(t)−W, δ/2) + φi(W, δ/2)] . (9)

Appendix E Online experimentation flow
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Figure 9: Concept map of the platform.
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Appendix F Detailed online experimentation algorithm

Algorithm 1: The pseudo online experiment algorithm

Input: Initial prior π1, number of treatments K, output size m, control level µ0, precision
parameter ε, confidence level δ, variance inflation level α ∈ [1,∞), time detection
window size W , confidence corrected for dependency δ′ = δ

6.4 log 36/δ , any-time valid
confidence functions φi(·, ·) for each arm.

for t = 1, 2, . . . do
Sampling:
Sample from variance inflated posterior: (θ̂1, θ̂2, . . . , θ̂K) ∼ πt(α);

Get the indexes with m highest mean: It ← arg maxI∈m[K]{θ̂i}i∈I ;
Pull treatments It, get reward {Yi(t)}i∈It .
Check for abrupt change:
for i ∈ It do

if mod (Ti(t),W ) = 0 and Ti(t) > W then
if |(µ̂i,Ti(t) − µ̂i,Ti(t)−W )| > W

Ti(t)
(φ(Ti(t)−W, δ/2m) + φ(W, δ/2m)) then

Restart;
end

end
end
Updating:
Update posterior: πt+1 ← F(πt, {Yi(t)}i∈It);
Update empirical mean: µ̂i,Ti(t+1) ← 1

Ti(t)+1{i=It}
(
Ti(t)µ̂i,Ti(t) + Yt1{i = It}

)
for all i;

Update set of positive treatments:
st(k) : = {i ∈ [K], µ̂i,Ti(t) + φi(Ti(t),

δ′k
K ) ≥ µ0};

At = {k ∈ [K] : |st(k)| ≥ k};
St+1 = st(max{At}).

Update set of best m treatments:
LCBi(t) : = µ̂i,Ti(t) − φi(Ti(t), δ

2(K−m) ), UCBi(t) : = µ̂i,Ti(t) + φi(Ti(t),
δ

2m )

Ut = arg maxU∈m[K]{µ̂i,Ti(t)}i∈U , Lt = arg maxL∈m[K],L6=Ut{UCBi(t)}i∈L.
Check for output:
if min LCBUt(t) > max UCBLt(t)− ε then

return Ut as the best m treatments.
end
if |St| ≥ m then

return St as the positive m treatments over control with FDR control.
end

end
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